Directly supervised trainees are underlined
#Corresponding authorship


1. ADRA1A-Gaq signalling potentiates adipocyte thermogenesis through CKB and TNAP
Rahbani JF, Scholtes C, Lagarde DM, Hussain MF, Roesler A, Dykstra CB, Bunk J, Samborska B, O’Brien SL, Tripp E, Pacis A, Angueira AR, Johansen OS, Cinkornpumin J, Hossain I, Lynes MD, Zhang Y, White AP, Pastor WA, Chondronikola M, Sidossis L, Klein S, Kralli A, Cypess AM, Pedersen SB, Jessen N, Tseng YH, Gerhart-Hines Z, Seale P, Calebiro D, Giguère V and Kazak L# (2022). 
Nature Metabolism

2. The timing of eating controls energy use
Lagarde DM and Kazak L# (2022). 

3. A brown fat-selective mechanism of mitochondrial calcium import?
Rahbani JF and Kazak L# (2022). 
Cell Metabolism

4. Mitochondrial uncouplers induce proton leak by activating AAC and UCP1
Bertholet AM, Natale AM, Bisignano P, Suzuki J, Fedorenko A, Hamiltion J, Brustovetsky T, Kazak L, Garrity R, Chouchani ET, Brutovetsky N, Grabe M, and Kirichok Y (2022). 

5. Calcium burns beige
Bunk J and Kazak L# (2022). 
Journal of Experimental Medicine

6. Creatine transport and creatine kinase activity is required for CD8+ T cell immunity
Samborska B, Roy DG, Rahbani JF, Hussain MF, Ma E, Jones RG, and Kazak L# (2021). Cell Reports


1. Creatine promotes metastatic dissemination
Lagarde Dand Kazak L# (2021). Cell Metabolism

2. Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine
Sun Y, Rahbani JF, Jedrychowski MP, Riley CL, Vidoni S, Bogoslavski D, Hu B, Dumesic PA, Zeng X, Wang AB, Knudsen NH, Kim CR, Marasciullo A, Millán JL, Chouchani ET, Kazak L,
and Spiegelman BM (2021). Nature

3. Creatine kinase B controls futile creatine cycling in thermogenic fat
Rahbani JF, Roesler A, Hussain MF, Samborska B, Dykstra CB, Tsai L, Jedrychowski MP, Vergnes L, Reue K, Spiegelman BM, and Kazak L#  (2021). Nature

4. Balancing energy demand and production by mitochondrial trafficking of RHEB
Kazak L#  (2021). Developmental Cell

5. Creatine mediates crosstalk between adipocytes and cancer cells to regulate obesity-driven breast cancer
Maguire OA, Ackerman SE, Aarthi MV, Marchildon F, Huang X, Kramer DJ, Szwed SK, Rosas-Villegas A, Gelfer RG, Turner LE, Ceballos V, Hejazi A, Samborska B, Rahbani JF, Dykstra CB, Luo J, Carroll TS, Jiang CS, Dannenberg AJ, Tersey SA, Mirmira RG, Kazak L, and Cohen P (2021). Cell Metabolism 

6. Neutrophil oxidative stress mediates obesity-associated vascular inflammation and metastatic transmigration
McDowell SA, Luo R, Arabzadeh A, Dore S, Bennet N, Karimi E, Yang R, Breton V, Lach K, Issac M, Samborska B, Perus L, Moldoveanu D, Wei Y, Fiset B, Rayes R, Watson IR, Kazak L, Guiot M, Fiset PO, Spicer JD, Dannenberg AJ, Walsh LA, and Quail DF (2021). Nature Cancer


1. Mechanism of futile creatine cycling in thermogenesis
Kazak L#  and Spiegelman BM (2020). Am J Physiol Endocrinol Metab

2. Career pathways, part 1.
Finley L# and Kazak L#  (2020). Nature Metabolism

3. Creatine metabolism: energy homeostasis, immunity and cancer biology.
Kazak L# and Cohen P# (2020). Nature Reviews Endocrinology

4. Regulation of adipocyte thermogenesis: mechanisms controlling obesity.
Hussain F, Roesler A and Kazak L# (2020). FEBS Journal

5. Ucp1-independent thermogenesis.
Roesler A and Kazak L# (2020). Biochemical Journal

6. Facultative protein selenation controls redox sensitivity, adipose tissue thermogenesis and obesity. 
Jedrychowski MP, Lu GZ, Szypt J, Mariotti M, Garrity R, Paolo J, Schweppe D, Kazak L, Murphy MP, Gladyshev V, Gygi SP, Chouchani ET and Spiegelman BM (2020). PNAS


1. H+ transport is an integral function of the mitochondrial ADP/ATP carrier. 
Bertholet A, Chouchani ET, Kazak L, Angelin A, Fedorenko A, Long JZ, Vidoni S, Garrity R, Cho J, Terada N, Wallace DC, Spiegelman BM, and Kirichok Y (2019). Nature

2. Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity.
Kazak L#, Rahbani JF, Samborska B, Lu GZ, Jedrychowski MP, Lajoie M, Zhang S, Ramsay LC, Dou FY, Tenen D, Chouchani ET, Dzeja P, Watson IR, Tsai L, Rosen ED, and Spiegelman BM# (2019). Nature Metabolism

  • Our work on creatine transport into adipose tissue was selected as an editorial favorite at Nature Metabolism

3. An Evolutionary Conserved uORF Regulates PGC1a and Oxidative Metabolism in Mice, Flies, and Bluefin Tuna. 
Dumesic PA, Egan DF, Gut P, Tran MT, Parisi A, Chatterjee N, Jedrychowski MP, Paschini M, Kazak L, Wilensky SE, Dou F, Bogoslavski D, Cartier JA, Perrimon N, Kajimura S, Parikh SM, and Spiegelman BM (2019). Cell Metabolism

4. mTOR as a central regulator of lifespan and aging. 
Papadopoli D, Boulay K, Kazak L, Pollock M, Mallette F, Topisirovic I, and Hulea L (2019). F1000 Research

5. New Advances in Adaptive Thermogenesis: UCP1 and Beyond. 
Chouchani ET#Kazak L#, and Spiegelman BM# (2019). Cell Metabolism

before 2019

1. Transcript availability dictates the balance between strand-asynchronous and strand-coupled mitochondrial DNA replication.  
Cluett TJ, Akman G, Reyes A, Kazak L, Mitchell A, Wood SR, Spinazzola A, Spelbrink JN and Holt IJ (2018). Nucleic Acids Research

2. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin.  
Kong X, Yao T, Zhou P, Kazak L, Tenen D, Lyubetskaya A, Dawes BA, Tsai L, Kahn BB, Spiegelman BM, Liu T, and Rosen ED (2018). Cell Metabolism

3. Accumulation of systemic succinate controls activation of adipose tissue thermogenesis. 
Mills EL, Pierce KA, Jedrychowski MP, Garrity R, Winther S, Vidoni S, Yoneshiro T, Spinelli JB, Lu GZ, Kazak L, Banks AS, Haigis MC, Kajimura S, Murphy MP, Gygi SP, Clish CB, and Chouchani ET (2018). Nature

4. Multiplexed Isobaric Tag-Based Profiling of Seven Murine Tissues Following In Vivo Nicotine Treatment Using a Minimalistic Proteomics Strategy. 
Paulo JA, Jedrychowski MP, Chouchani ET, Kazak L, and Gygi SP (2018). Proteomics

5. Noncanonical agonist PPARγ ligands modulate the response to DNA damage and sensitize cancer cells to cytotoxic chemotherapy. 
Khandekar MJ, Banks AS, Laznik-Bogoslavski D, White JP, Choi JH, Kazak L, Lo JC, Cohen P, Wong KK, Kamenecka TM, Griffin PR, and Spiegelman BM (2018). PNAS

Screen Shot 2017-12-14 at 12.19.44 PM

6. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity.  
Kazak L#, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina A, Kumari M, Zhang S, Vuckovic I, Laznik-Bogoslavski D, Dzeja P, Banks AS, Rosen ED, and Spiegelman BM# (2017). Cell Metabolism

7. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: bridging physiology and mechanisms. Chouchani ET, Kazak L, and Spiegelman BM (2017). Journal of Biological Chemistry

8. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction.
Kazak L, Chouchani ET, Stavrovskaya IG, Lu GZ, Jedrychowski MP, Egan DF, Kumari M, Kong X, Erickson BK, Szypt J, Rosen ED, Murphy MP, Kristal BS, Gygi SP, and Spiegelman BM (2017). PNAS

9. Mitochondrial Patch-Clamp of Beige Adipocytes Reveals UCP1-positive and UCP1-negative Cells Both Exhibiting Futile Creatine.  
Bertholet AM, Kazak L, Chouchani ET, Bogaczynska MG, Paranjpe I, Wainwright GL, Betourne A, Kajimura S, Spiegelman BM, and Kirichok Y (2017). Cell Metabolism

10. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1.   
Chouchani ET*, Kazak L*, Jedrychowski MP, Pierce KA, Lu GZ, Laznik-Bogoslavski D, Clish CB, Robinson AJ, Gygi SP, and Spiegelman BM (2016). Nature

11. A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat.  
Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC, Kajimura S, Gygi SP, and Spiegelman BM (2015). Cell

12. Tumor-derived PTH-related protein triggers adipose tissue browning and cancer cachexia.  
Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, and Spiegelman BM (2015). Nature

13. IRF4 Is a Key Thermogenic Transcriptional Partner of PGC-1α. 
Kong X, Banks A, Liu T, Kazak L, Rao RR, Cohen P, Wang X, Yu S, Lo JC, Tseng YH, Cypess AM, Xue R, Kleiner S, Kang S, Spiegelman BM, and Rosen ED (2014). Cell

14. Fat cells directly sense temperature to activate thermogenesis.  
Ye L, Wu J, Cohen P, Kazak L, Khandekar MJ, Jedrychowski MP, Zeng X, Gygi SP, and Spiegelman BM (2013). PNAS

15. A Cryptic Targeting Signal Creates a Mitochondrial FEN1 Isoform with Tailed R-Loop Binding Properties.
Kazak L, Reyes A, He J, Wood SR, Brea-Calvo G, Holen TT, and Holt IJ (2013). PLoS One

16. Mitochondrial DNA replication proceeds via a ‘bootlace’ mechanism involving the incorporation of processed transcripts.
Reyes A, Kazak L, Wood SR, Yasukawa T, Jacbos HT, and Holt IJ (2013). Nucleic Acids Research

17. Alternative translation initiation augments the human mitochondrial proteome.   
Kazak L#, Reyes A, Duncan A, Rorbach J, Wood SR, Brea-Calvo G, Gammage P, Robinson AJ, Minczuk M, and Holt IJ# (2013). Nucleic Acids Research

18. Minimizing the damage: repair pathways keep mtDNA intact. 
Kazak L#, Reyes A#, and Holt IJ# (2012). Nature Reviews Molecular Cell Biology


%d bloggers like this:
search previous next tag category expand menu location phone mail time cart zoom edit close